Gauss's law

Gauss showed that an important relationship exists between the total electric flux over a closed surface and the total charge enclosed by the surface. This relationship is known as Gauss's law. Using SI units the law may be stated as follows:

In an arbitrary electrostatic field fin vacuum) the total electric flux over any closed surface is equal to $1/\epsilon_0$ times the total charge enclosed by the surface, where ϵ_0 is the ree space per nattivity. For a closed surface S enclosing N number of point charges q_1 , q_2 , ... q_N the law may be expressed mathematically as

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \times \sum_{i=1}^{N} q_i. \tag{1.7-2}$$

Gauss' theorem - Application - 2

Gauss' theorem - Application - 2 · I CANAN

Field inside the sphere

	•	•